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EXAMPLE 3.19

A hydroelectric power plant (Fig. E3.19) takes in 30 m3/s of water through its turbine and dis-
charges it to the atmosphere at V2 � 2 m/s. The head loss in the turbine and penstock system is
hf � 20 m. Assuming turbulent flow, � � 1.06, estimate the power in MW extracted by the tur-
bine.
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Solution

We neglect viscous work and heat transfer and take section 1 at the reservoir surface (Fig. E3.19),
where V1 � 0, p1 � patm, and z1 � 100 m. Section 2 is at the turbine outlet. The steady-flow en-
ergy equation (3.71) becomes, in head form,
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The pressure terms cancel, and we may solve for the turbine head (which is positive):

ht � 100 � 20 � 0.2 � 79.8 m

The turbine extracts about 79.8 percent of the 100-m head available from the dam. The total
power extracted may be evaluated from the water mass flow:

P � ṁws � (	Q)(ght) � (998 kg/m3)(30 m3/s)(9.81 m/s2)(79.8 m)

� 23.4 E6 kg � m2/s3� 23.4 E6 N � m/s � 23.4 MW Ans. 7

The turbine drives an electric generator which probably has losses of about 15 percent, so the
net power generated by this hydroelectric plant is about 20 MW.

EXAMPLE 3.20

The pump in Fig. E3.20 delivers water (62.4 lbf/ft3) at 3 ft3/s to a machine at section 2, which
is 20 ft higher than the reservoir surface. The losses between 1 and 2 are given by hf � KV2

2/(2g),
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where K � 7.5 is a dimensionless loss coefficient (see Sec. 6.7). Take � � 1.07. Find the horse-
power required for the pump if it is 80 percent efficient.

Solution

If the reservoir is large, the flow is steady, with V1 � 0. We can compute V2 from the given flow
rate and the pipe diameter:

V2 � �
A
Q

2
� � � 61.1 ft/s

The viscous work is zero because of the solid walls and near-one-dimensional inlet and exit. The
steady-flow energy equation (3.71) becomes
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Introducing V1 � 0, z1 � 0, and hf � KV2
2/(2g), we may solve for the pump head:
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The pressures should be in lbf/ft2 for consistent units. For the given data, we obtain
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The pump head is negative, indicating work done on the fluid. As in Example 3.19, the power
delivered is computed from

P � ṁws � 	Qghs � (1.94 slug/ft3)(3.0 ft3/s)(32.2 ft/s2)(�507 ft) � �94,900 ft � lbf/s
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3.7 Frictionless Flow:
The Bernoulli Equation

We drop the negative sign when merely referring to the “power” required. If the pump is 80 per-
cent efficient, the input power required to drive it is

Pinput � �
effic

P
iency
� � �

17
0
3
.8

hp
� � 216 hp Ans.

The inclusion of the kinetic-energy correction factor � in this case made a difference of about
1 percent in the result.

Closely related to the steady-flow energy equation is a relation between pressure, ve-
locity, and elevation in a frictionless flow, now called the Bernoulli equation. It was
stated (vaguely) in words in 1738 in a textbook by Daniel Bernoulli. A complete der-
ivation of the equation was given in 1755 by Leonhard Euler. The Bernoulli equation
is very famous and very widely used, but one should be wary of its restrictions—all
fluids are viscous and thus all flows have friction to some extent. To use the Bernoulli
equation correctly, one must confine it to regions of the flow which are nearly fric-
tionless. This section (and, in more detail, Chap. 8) will address the proper use of the
Bernoulli relation.

Consider Fig. 3.15, which is an elemental fixed streamtube control volume of vari-
able area A(s) and length ds, where s is the streamline direction. The properties (	, V,
p) may vary with s and time but are assumed to be uniform over the cross section A.
The streamtube orientation 
 is arbitrary, with an elevation change dz � ds sin 
. Fric-
tion on the streamtube walls is shown and then neglected—a very restrictive assump-
tion.

Conservation of mass (3.20) for this elemental control volume yields
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where ṁ � 	AV and d� � A ds. Then our desired form of mass conservation is
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Fig. 3.15 The Bernoulli equation
for frictionless flow along a stream-
line: (a) forces and fluxes; (b) net
pressure force after uniform sub-
traction of p.




